INTRODUCTION

Modern era ultrasound devices are small, portable, practical, and increasingly affordable. Probes connectable to tablets or smartphones including software are available worldwide. The technique allows direct interaction with the patient. We feel that in the near future ultrasound will be an indispensable diagnostic tool in any dermatologist’s office.

The use of ultrasound for imaging soft tissue fillers, has been reported and recommended in a growing number of publications during the last decade.1-7 The use of ultrasound is being promoted as it is a noninvasive imaging modality that provides a good definition for studying the skin and deeper layers in real time, including blood flow.8-12

Currently, ultrasound is considered the first-imaging technique for dealing with fillers and managing their potential complications,13-15 because it can detect and identify the most common types of cosmetic fillers,15-17 including their anatomical location, size, and depth.12,18 In cases where filler treatments have been performed previously, it can be helpful in patients without a clear history of fillers.13-15,19 In the clinical practice setting, ultrasound examination can support the diagnosis and treatment of early and late complications.16,17,19-22 In the case of hyaluronic acid fillers, hyaluronidase can be placed with ultrasound-guided injections exactly into the filler deposit.11,23

The use of color Doppler, as in other indications of ultrasound, has been strongly suggested.9,15,21 This allows observation of the anatomical variants of the main facial arteries before treatment is performed.21
For research purposes, ultrasound examination provides valuable information on the behavior, longevity, and interaction of the filler within the tissues.\(^{24-29}\)

All articles published describe the good visibility of different fillers and consider ultrasound as an asset for cosmetic medicine as it improves the safety of filler treatments. These papers have been published by physicians from different specialties and backgrounds; therefore, there is a wide range of terminology in the ultrasound description of the same type of filler. Interpreting these different descriptions may be confusing. For new applications, nomenclature should be unequivocal. Standardization of the descriptions based on basic sonographic parameters may lead to a better mutual understanding and interpretation. This paper examines ultrasound glossary for soft tissue fillers.

2 | METHODS

An assessment of articles indexed for MEDLINE/PubMed and Embed electronic database was conducted according to the PRISMA guidelines (Jan 2000–May 2018), which was restricted to papers published in English, using the relevant keywords: ultrasound [or] sonographic [and] dermal fillers, soft tissue filler, injectable filler, tissue augmentation, hyaluronic acid, collagen, poly-\(\varepsilon\)-lactic acid, polycaprolactone, calcium hydroxyapatite, polyalkylimide, polyacrylamide, silicon oil, dimethylsiloxanes, polymethylmethacrylate, hydroxyethyl methacrylate lipofilling, complications, and adverse events.

As this topic is an innovative, developing area of cosmetic medicine, all studies excluding case reports were selected.

3 | RESULTS

In this assessment, a total of 39 articles (19 published in a journal for dermatology, 11 for plastic surgery, 9 for radiology) published between 2009 and 2018 could be included. Of these 39 articles, 12 described the ultrasound as a tool for research purposes, 10 to detect fillers and 17 articles mention the follow-up and treatment of complications.

All of these articles were investigated for their sonographic descriptions of soft tissue fillers and described in Table 1.

Furthermore, the main parameters used for describing and monitoring soft tissue fillers were grouped. In total, ten parameters were distinguished. Among these, echogenicity was the most common parameter reported. Echogenicity is the characteristic reflection of sound waves generated by a tissue expressed in the gray scale. Four scales are being used as follows:

- Anechoic when there are no echoes and the structure appears black on screen.
- Hyperechoic when there is highly reflectiveness and an echo rich structure when compared to neighboring structures; it appears as varying tones of white.
- Isoechoic when the structure appears with similar echogenicity to a neighboring structure.

• The other nine parameters extracted from the articles were texture, border, shape, quantity, diameter, artifacts, internal characteristics, anatomical location, and evolution. However, the descriptions of these parameters differed widely in the reports.

For example, the sonographic glossary will use the term “homogeneous” or “heterogeneous” to describe the texture of a structure. However, some articles mention “regular” instead of homogeneous. Furthermore, sharp regular borders or distinct walls were re-defined as “well-defined”. Inner spots or an irregular inner pattern were categorized as “internal echoes”.

All articles mention the anatomical location of the soft tissue filler identified with ultrasound and most of them describe the filler changes over time. The ten parameters and their subtypes were extracted from literature and shown in Table 2.

3.1 | Sonographic parameters for identifying and reporting fillers

As mentioned above, the following sonographic parameters were commonly reported in the articles and may be relevant for identifying, monitoring, and reporting fillers:

3.1.1 | Echogenicity

Soft tissue fillers present distinctive sonographic patterns of echogenicity.\(^{15}\) For example, water-based (hydrophilic) fillers will give a different ultrasound image compared with hydrophobic fillers. All hydrophilic fillers are able to bind water and are usually injected as a gel; therefore, the sound waves will easily pass through and they appear as anechoic (black) on screen. Most hydrophobic fillers are made from synthetic materials and do not degrade in tissue. Examples of these fillers are silicon oil and polymethylmethacrylate (PMMA).\(^{29}\) These type of fillers contain microspheres that provoke variable degrees of intense reflection of the sound waves; therefore, they appear as hyperechoic (white) on the screen.\(^ {30}\) Some fillers may change in echogenicity over time as their water-soluble gel vehicle may be reabsorbed.

3.1.2 | Texture

The texture within the deposits may be homogeneous or heterogeneous.

Homogeneous: the filler deposit is uniform in echogenicity. Heterogeneous: the filler deposit is not uniform in echogenicity. For example, silicone oil tends to appear as homogeneously hyperechoic.\(^ {3,4,30-32}\) In contrast, polycaprolactone shows a mixed echogenicity with a hypoechoic matrix that contains hyperechoic spots.\(^ {31}\)
TABLE 1 Ultrasound descriptions of cosmetic fillers reported in the medical literature

<table>
<thead>
<tr>
<th>Filler Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyaluronic acid</td>
<td>Scattered anechoic round structures pseudocysts,(^2) fairly distinct hypoechoic (black) lesion with some hyperechoic (linear) reflections,(^3) anechoic or hypoechoic round or oval pseudocystic structures,(^6) well-defined regular hyperechoic mass without any signs of internal echoes,(^11,13) oblong, homogeneous papule, with an isoechochogenic aspect,(^19) mixture of iso- and hypoechogenic pools,(^29) dark nonechoic zone,(^15) oval-shaped anechoic pseudocystic structures,(^37) cross linked: heterogeneous echogenic appearance of papulae,(^19) monophasic: homogenous papule that was as dense as the surrounding tissue,(^19) small anechoic pseudocystic structures,(^23,10) hypaluronic acid deposits,(^27) anechoic pearls,(^28) anechoic bubble with diffuse margins,(^25) largely anechoic with internal echoes called “the sparkly lake sign”,(^29) a well-defined regular hypoechoic mass or band,(^39) well-defined, hypoechoic subcutaneous lesions without any signs of internal echoes,(^32) hypoechoic pseudocyst (^35) anechoic (black) and hypoechoic deposit (^34)</td>
</tr>
<tr>
<td>Calcium hydroxyapatite</td>
<td>Hyperechoic tissue (shadowing),(^1) hyperechoic deposits with variable degrees of acoustic shadowing due to calcium,(^2,8) hyperechoic deposits with posterior acoustic shadowing artifact,(^7,22) hypoechoic but with denser areas inside (^24)</td>
</tr>
<tr>
<td>Polycaprolactone</td>
<td>Bright hyperechoic spots with a mini-comet-tail artifact within a hypoechoic matrix (^18)</td>
</tr>
<tr>
<td>Polyalkylimide (PAIG)</td>
<td>Anechoic with water-like aspect in recent implants and corpusculated in older ones,(^19) hyperechoic mass with a distinct edge from surrounding tissues, with small echoes inside,(^11) anechoic oval pseudo cystic structures,(^20) hyperechoic mass with inner spots,(^31) oval-shaped anechoic pseudocystic structures,(^32,26) hyperechoic pattern surrounded by a wall (^24)</td>
</tr>
<tr>
<td>Polyacrylamide (PAAG)</td>
<td>Anechoic to hypoechoic lesions with distinct echogenic walls,(^3) hyperechoic mass with inner spots,(^11,21) anechoic round or oval-pseudocystic structures,(^17) hyperechoic mass and containing a spot of linear diffusion of the material(^21) increased hypodermal echogenicity in the vicinity of the deposits,(^22) hyperechoic pattern surrounded by a wall (^24)</td>
</tr>
<tr>
<td>Silicon oil</td>
<td>Hyperechoic deposits (snow storm) with high degree of sound scattering,(^2) shadowing due to tight fibrotic tissue,(^2) snowstorm pattern,(^11,24) hyperechoic deposits with a posterior reverberance that produces a “snowstorm” artifact (^7) hyperechoic, with a posterior reverberation artifact,(^17) strong acoustic shadow (^21)</td>
</tr>
<tr>
<td>Pure silicon</td>
<td>Anechoic(^2) Anechoic round or oval-shaped pseudocystic structures,(^17) oval anechoic lacunar areas (^22)</td>
</tr>
<tr>
<td>Poly(methylmethacrylate) (PMMA)</td>
<td>Multiple bright hyperechoic dots producing mini-comet tail artifact,(^2,17) hyperechoic dots producing mini-comet tail shaped artifact,(^22) shadowing due to tight fibrotic tissue,(^3) large and old deposits may show reverberance) after 6 mo: posterior acoustic shadowing artifact (^17)</td>
</tr>
</tbody>
</table>

(Continues)

3.1.3 | Border

Hydrophilic fillers have a well-defined border whereas hydrophobic fillers tend to be ill-defined.\(^30,31\) Resorbable polymeric fillers such as polycaprolactone may change in contour over time, as the hydrophilic gel carrier is being reabsorbed, the polyesters alone may remain visible as bright hyperechoic spots.\(^22\)

3.1.4 | Shape

Hydrophilic fillers tend to have an oval or round shape. Some synthetic fillers that come in a gel such as polyacrylamide tend to maintain their oval or rounded shape, echogenicity, and size during extended periods of time, usually years.\(^2,31,33\) In contrast, pure hyaluronic acid (noncross-linked) deposits tend to modify their shape over months.\(^34,35\) Other filler may have a different appearance as band- or mass-like.

3.1.5 | Diameter

The most widely used hydrophilic filler is hyaluronic acid. This filler are meant for different treatment applications and duration and are injected in different depot sizes.\(^36\) The diameter can be measured during ultrasound examination, and changes in size may be followed up.\(^26,31\)

3.1.6 | Quantity

Depending on the technique, one large dark bolus injected for volume or a line of multiple deposits may be visible in the path of the injection.\(^2,28\)

3.1.7 | Internal characteristics

Some hydrophilic fillers such as hyaluronic acid present variations in their echogenicity over time due to the loss of the gel vehicle that contains the deposits and may become more hypoechoic and/or may show inner echoes.\(^32,37,38\) Examples of this situation are the long-lasting or cross-linking types of hyaluronic acid and polymeric fillers with gel vehicles.\(^31\)

3.1.8 | Artifacts

Most hydrophobic fillers are made from synthetic materials and do not degrade in tissue. On sonography, they show different patterns of posterior acoustic artifacts which can allow their
TABLE 2 Description of parameters of sonographic fillers

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Description</th>
<th>Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echogenicity</td>
<td>Anechoic</td>
<td>Hypoechoic</td>
<td>Isoechoic</td>
<td>Hyperechoic</td>
</tr>
<tr>
<td>Texture</td>
<td>Homogeneous: the filler deposit is uniform in echogenicity</td>
<td>Heterogeneous: The filler deposit is not uniform in echogenicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Border</td>
<td>Well-defined</td>
<td>Ill-defined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shape</td>
<td>Oval</td>
<td>Round</td>
<td>Band-like</td>
<td>Mass-like</td>
</tr>
<tr>
<td>Quantity: when the deposits can be delimited or separated into units</td>
<td>Single</td>
<td>Multiple</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter: measurements in mm or cm</td>
<td>Small deposits: a representative sample of the size of the deposits can be taken</td>
<td>Wide or diffuse dispersion of the deposits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artifacts</td>
<td>Posterior Reverberance "snow storm"</td>
<td>Mini-comet tail</td>
<td>Posterior acoustic shadowing</td>
<td></td>
</tr>
<tr>
<td>Internal characteristics</td>
<td>Internal echoes</td>
<td>Septa</td>
<td>Hyperechoic calcifications</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 3 Sonographic descriptions for cosmetic fillers

<table>
<thead>
<tr>
<th>Material</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyaluronic acid</td>
<td>Well-defined oval- or round-shaped anechoic homogeneous deposits without any signs of internal echoes.</td>
</tr>
<tr>
<td>Calcium hydroxyapatite</td>
<td>Well-defined band-like hyperechoic deposit with posterior acoustic shadowing artifact</td>
</tr>
<tr>
<td>Polycaprolactone</td>
<td>Ill-defined hypoechoic matrix that contain bright hyperechoic spots with a mini-comet tail artifact</td>
</tr>
<tr>
<td>Polyalkylimide</td>
<td>Hyperechoic mass, hyperechoic pseudocapsule, containing a spot of linear, sometimes an irregular pattern of hyperechoic material within the mass</td>
</tr>
<tr>
<td>Polyacrylamide</td>
<td>Well-defined, oval-shaped anechoic homogeneous deposits that produce posterior acoustic</td>
</tr>
<tr>
<td>Silicon oil</td>
<td>Ill-defined, hyperechoic mass-like deposits that produce diffuse posterior reverberation ("snow storm pattern").</td>
</tr>
<tr>
<td>Polymethylmethacrylate</td>
<td>Ill-defined, hyperechoic mass-like deposits that produce mini-comet tail artifacts</td>
</tr>
<tr>
<td>Hydroxyethylmethacrylate</td>
<td>Ill-defined, hyperechoic mass-like deposits</td>
</tr>
<tr>
<td>Lipofilling</td>
<td>Hyperechoic, heterogeneous well-defined oval-shaped mass-like deposit (marker 2) with some hyperechoic linear septa</td>
</tr>
</tbody>
</table>

FIGURE 1 hyaluronic acid; two anechoic, homogeneous, well-defined oval-shaped deposits, one of them between markers

FIGURE 2 Polyalkylimide: an anechoic, homogeneous, well-defined, oval-shaped single oval deposit (without internal echoes)
Silicone oil produces a high reflection and a diffuse posterior reverberance artifact called “snow storm.” Other fillers such as polymethylmethacrylate generate a strong and tiny posterior reverberance of the sound waves which is called mini-comet tail artifact. Additionally, these fillers may generate a dense fibrotic reaction around the particles of the material that can produce areas with posterior acoustic shadowing artifact.3,25

3.1.9 | Anatomical location

Another important point to bear in mind is that fillers used for increasing the volume will be injected on a deeper plane, usually close to the bony margin. In contrast, fillers for treating wrinkles are injected more superficially.31,32

3.1.10 | Evolution

The intrinsic characteristics of each filler will generate variations in their ultrasound appearance. For example, hyaluronic acid deposits tend to modify their shape, decrease in size and become more hypoechoic over time.37,38

In Table 3 and the Figures 1-8 underneath, these parameters are applied to the most commonly fillers used.
FIGURE 8 Lipofilling: hypoechoic, heterogeneous well-defined oval-shaped mass-like deposit (marker 2) with some hyperechoic linear septa that disrupt the architecture of the neighboring fatty tissue of the subcutis. Marker 1 is showing the distance from the linear septa that disrupt the architecture of the neighboring fatty oval-like deposit (marker 2) with some hyperechoic

4 | CONCLUSION

In this article, we examined the terminology and parameters used to describe soft tissue fillers. One of the current shortcomings is that data and patient numbers described in the existing publications are limited. More extensive data and prospective series are necessary to evaluate and if necessary adjust the proposed parameters in the future.

Although sometimes lacking sonographic glossary, most articles focus on the same parameters.

A proposal considering ten sonographic parameters for identifying, monitoring, and reporting these deposits on ultrasound is hereby provided. We notice that incorporating these parameters improves an accurate and uniform terminology. It may serve as a guideline for dermatologists using ultrasonography in their offices. Furthermore, it may contribute to standardize future literature and reports and facilitate the comparison of research.

CONFLICTS OF INTEREST

None declared.

ORCID

Leonie W. Schelke https://orcid.org/0000-0002-5512-1956

REFERENCES
